Back to blog
Articles
May 3, 2023
·
3 MIN READ

OpenAI Mode Specific Models

May 3, 2023
|
3 MIN READ

Latest content

Customer Stories
4min read

Lightspeed Uses HumanFirst for In-House AI Enablement

Meet Caroline, an analyst-turned-AI-expert who replaced manual QA, saved countless managerial hours, and built new solutions for customer support.
December 10, 2024
Customer Stories
4 min read

How Infobip Generated 220+ Knowledge Articles with Gen AI For Smarter Self-Service and Better NPS

Partnering with HumanFirst, Infobip generated over 220 knowledge articles, unlocked 30% of their agents' time, and improved containment by a projected 15%.
September 16, 2024
Articles
7 min read

Non-Technical AI Adoption: The Value of & Path Towards Workforce-Wide AI

Reviewing the state of employee experimentation and organizational adoption, and exploring the shifts in thinking, tooling, and training required for workforce-wide AI.
September 12, 2024
Articles
6 min read

AI for CIOs: From One-Off Use to Company-Wide Value

A maturity model for three stages of AI adoption, including strategies for company leaders to progress to the next stage.
September 12, 2024
Tutorials
4 min read

Building Prompts for Generators in Dialogflow CX

How to get started with generative features.
August 15, 2024
Announcements
3 min read

HumanFirst and Infobip Announce a Partnership to Equip Enterprise Teams with Data + Generative AI

With a one-click integration to Conversations, Infobip’s contact center solution, HumanFirst helps enterprise teams leverage LLMs to analyze 100% of their customer data.
August 8, 2024
Tutorials
4 min read

Two Field-Tested Prompts for CX Teams

Get deeper insights from unstructured customer data with generative AI.
August 7, 2024
Tutorials
5 min read

Optimizing RAG with Knowledge Base Maintenance

How to find gaps between knowledge base content and real user questions.
April 23, 2024
Customer Stories
4min read

Lightspeed Uses HumanFirst for In-House AI Enablement

Meet Caroline, an analyst-turned-AI-expert who replaced manual QA, saved countless managerial hours, and built new solutions for customer support.
December 10, 2024
Customer Stories
4 min read

How Infobip Generated 220+ Knowledge Articles with Gen AI For Smarter Self-Service and Better NPS

Partnering with HumanFirst, Infobip generated over 220 knowledge articles, unlocked 30% of their agents' time, and improved containment by a projected 15%.
September 16, 2024
Articles
7 min read

Non-Technical AI Adoption: The Value of & Path Towards Workforce-Wide AI

Reviewing the state of employee experimentation and organizational adoption, and exploring the shifts in thinking, tooling, and training required for workforce-wide AI.
September 12, 2024

Let your data drive.

OpenAI Mode Specific Models

COBUS GREYLING
May 3, 2023
.
3 MIN READ

OpenAI has implemented modes in their playground and development interface, each one having its own dedicated Large Language Model (LLM).

OpenAI has been focusing on two key areas to introduce structure into their LLM environment:

  • Prompt Engineering &
  • Model Segmentation.

Considering Model Segmentation, OpenAI has trained models for specific tasks, such as completion, chat, insertion, and editing of text. The most popular mode that OpenAI has offered is the complete mode.

Below is a typical complete prompt, shown in the Goose AI playground.

Prompt Engineering is being heavily leveraged to customise LLM input to fit various modes such as insert, complete, chat, etc.

To determine which prompt templates are most effective for different use-cases, prompt engineers have to experiment.

As a result, OpenAI has created different modes for the most common LLM applications. Each mode consists of a particular LLM, endpoint, and custom Python formatting.

An OpenAI mode is a collection of an endpoint, specific model, and prompt template. Obviously the prompt template will translate into Python code for run-time. Selecting an endpoint without an appropriate model will result in an error.

The image below depicts the model endpoints along with the models it is compatible with. Hence, when selecting the best mode for specific implementations, one has to point to a mode-specific model. Additionally, various end-points are available to manage various tasks.

Source

Prompt Engineering is impacted as each mode has a predetermined input template that needs to be taken into account. This is especially true for chat, which is the most popular mode. Continuing to develop and refine modes, input templates, and model segmentation is certain to occur.

This necessitates applications dedicated to prompt creation and management, as well as prompt chaining applications, to regularly update their products to keep up with OpenAI updates.

Are users required to make use of modes? Absolutely not.

Nonetheless, the best outcomes are attained when the user's task type and the most suitable mode are closely aligned.

Below you can see the various end-points:

In the screen shot below, from the OpenAI Playground, the four modes can be accessed with Chat, Insert and Edit being currently in Beta.

A table below lists the four modes, with the three new modes marked as new and their respective models available for fine-tuning on the right. This is to address the assumption that all OpenAI models are fine-tuneable.

Considering the Chat Mode, the models gpt-3.5-turbo and gpt-3.5-turbo-0301 are generally available, but not the gpt-4 models, yet.

In the Insert row, OpenAI advises that the two insert models be used for insert specific tasks: text-davinci-insert-001 & text-davinci-insert-002.

Below is a screenshot of the complete OpenAI playground, with the modes visible at the top right.

Taking the chat mode as an example, let’s compare the playground view to the Python code view:

And the same view in the code, notice how system, user and assistant roles are defined:

I’m currently the Chief Evangelist @ HumanFirst. I explore and write about all things at the intersection of AI and language; ranging from LLMs, Chatbots, Voicebots, Development Frameworks, Data-Centric latent spaces and more.

Subscribe to HumanFirst Blog

Get the latest posts delivered right to your inbox