Back to blog
Articles
May 24, 2023
·
2 MIN READ

Prompt Drift & Chaining

May 24, 2023
|
2 MIN READ

Latest content

Customer Stories
4min read

Lightspeed Uses HumanFirst for In-House AI Enablement

Meet Caroline, an analyst-turned-AI-expert who replaced manual QA, saved countless managerial hours, and built new solutions for customer support.
December 10, 2024
Customer Stories
4 min read

How Infobip Generated 220+ Knowledge Articles with Gen AI For Smarter Self-Service and Better NPS

Partnering with HumanFirst, Infobip generated over 220 knowledge articles, unlocked 30% of their agents' time, and improved containment by a projected 15%.
September 16, 2024
Articles
7 min read

Non-Technical AI Adoption: The Value of & Path Towards Workforce-Wide AI

Reviewing the state of employee experimentation and organizational adoption, and exploring the shifts in thinking, tooling, and training required for workforce-wide AI.
September 12, 2024
Articles
6 min read

AI for CIOs: From One-Off Use to Company-Wide Value

A maturity model for three stages of AI adoption, including strategies for company leaders to progress to the next stage.
September 12, 2024
Tutorials
4 min read

Building Prompts for Generators in Dialogflow CX

How to get started with generative features.
August 15, 2024
Announcements
3 min read

HumanFirst and Infobip Announce a Partnership to Equip Enterprise Teams with Data + Generative AI

With a one-click integration to Conversations, Infobip’s contact center solution, HumanFirst helps enterprise teams leverage LLMs to analyze 100% of their customer data.
August 8, 2024
Tutorials
4 min read

Two Field-Tested Prompts for CX Teams

Get deeper insights from unstructured customer data with generative AI.
August 7, 2024
Tutorials
5 min read

Optimizing RAG with Knowledge Base Maintenance

How to find gaps between knowledge base content and real user questions.
April 23, 2024
Customer Stories
4min read

Lightspeed Uses HumanFirst for In-House AI Enablement

Meet Caroline, an analyst-turned-AI-expert who replaced manual QA, saved countless managerial hours, and built new solutions for customer support.
December 10, 2024
Customer Stories
4 min read

How Infobip Generated 220+ Knowledge Articles with Gen AI For Smarter Self-Service and Better NPS

Partnering with HumanFirst, Infobip generated over 220 knowledge articles, unlocked 30% of their agents' time, and improved containment by a projected 15%.
September 16, 2024
Articles
7 min read

Non-Technical AI Adoption: The Value of & Path Towards Workforce-Wide AI

Reviewing the state of employee experimentation and organizational adoption, and exploring the shifts in thinking, tooling, and training required for workforce-wide AI.
September 12, 2024

Let your data drive.

The notion to create workflows (chains) which leverage Large Language Models (LLMs) are necessary and needed. But there are a few considerations, one of which is Prompt Drift.

Chaining, also known as Prompt Chaining, is a way of employing a programming tool (often with a graphical interface) to arrange large language model prompts in an application which often creates a conversational user interface.

The essential element of prompt chaining involves transferring tasks from one chain to another, which is likely to continue for the entirety of the conversation with the user.

Prompt Drift is the process of cascading inaccuracies which can be caused by:

  • Model-inspired tangents,
  • Incorrect problem extraction,
  • LLMs’ randomness and creative surprises
Chaining can act as a safeguard against model-inspired tangents, because each step of the Chain defines a clear goal. ~ Source

The image below shows how a single node or prompt, forming part of a larger chain, can be impacted to produce prompt drift.

  1. The user input can be unexpected or unplanned producing an unforeseen output from the node.
  2. The previous node output can be inaccurate or produce drift which is exacerbated in the current node.
  3. The LLM Response can also be unexpected, due to the fact that LLMs are non-deterministic.

One of the ways to counter prompt drift (error cascading) is to ensure the prompt template used is comprehensive and enough contextual information is supplied to negate LLM hallucination.

In Closing

It is important to not see prompt chaining in isolation, but rather consider Prompt Engineering as a discipline which consists of eight legs, as depicted below.

Source

Prompt Engineering is the foundation of Chaining and the discipline of Prompt Engineering is very simple and accessible.

However, as the LLM landscape develops, prompts are becoming programable and incorporated into more complex structures. These structures should be a combination of available affordances.

Hence chaining should be supported by elements like Agents, Pipelines, Chain-of-Thought Reasoning, etc.

I’m currently the Chief Evangelist @ HumanFirst. I explore & write about all things at the intersection of AI and language. Including NLU design, evaluation & optimisation. Data-centric prompt tuning & LLM observability, evaluation & fine-tuning.

Subscribe to HumanFirst Blog

Get the latest posts delivered right to your inbox